今天给各位分享高一年级必修五数学知识点(通用多篇)范文的知识,其中也会对高一年级必修五数学知识点(通用多篇)范文进行解释,如果能碰巧解决你现在面临的问题,别忘了关注本站,现在开始吧!
高一年级必修五数学知识点(通用多篇)范文的介绍就聊到这里吧,感谢你花时间阅读本站内容,更多关于高一年级必修五数学知识点(通用多篇)范文、高一年级必修五数学知识点(通用多篇)范文的信息别忘了在本站进行查找喔。
本文导读目录:
高中数学因为知识点多,好多同学听课能听懂,但是做题却不会。因此,经常性的复习是巩固数学知识点的很好的途径。以下是学习啦小编为您整理的关于高一数学必修一幂函数概念知识点的相关资料,供您阅读。 高一数学必修一幂函数概念知识点 知识点总结 本节主要包括幂函数的定义、特殊幂函数的图像及其性质等知识点。这几个知识点都比较容易理解。 1、幂函数的定义 常见考法 本节在段考中常以选择题和填空题形式考查幂函数的图像和性质,在高考中很少单独命题,和函数的其它知识联合考查的也不是很多。考查的也比较简单。属于容易题。 误区提醒 高一数学必修一幂函数概念知识点相关文章: 1.高一数学幂函数知识点总结 2.高一数学函数的基本性质知识点梳理 3.高一必修一数学函数知识点 4.高一数学必修1函数的知识点 5.高一数学必修一重点知识点 6.高一数学必修一函数知识点总结 7.高一数学必修1对数函数知识点总结 8.高一数学必修一知识点总结归纳 【前言】高一年级必修五数学知识点(通用多篇)为好范文网的会员投稿推荐,但愿对你的学习工作带来帮助。 ⑴如果数列{a}是公比为q的等比数列,那么,它的前n项和公式是S= 也就是说,公比为q的等比数列的前n项和公式是q的分段函数的一系列函数值,分段的界限是在q=1处。因此,使用等比数列的前n项和公式,必须要弄清公比q是可能等于1还是必不等于1,如果q可能等于1,则需分q=1和q≠1进行讨论。 ⑵当已知a,q,n时,用公式S=;当已知a,q,a时,用公式S=。 ⑶若S是以q为公比的等比数列,则有S=S+qS.⑵ ⑷若数列{a}为等比数列,则S,S-S,S-S,…仍然成等比数列。 ⑸若项数为3n的等比数列(q≠-1)前n项和与前n项积分别为S与T,次n项和与次n项积分别为S与T,最后n项和与n项积分别为S与T,则S,S,S成等比数列,T,T,T亦成等比数列 万能公式:sin2α=2tanα/(1+tan^2α)(注:tan^2α是指tan平方α) cos2α=(1-tan^2α)/(1+tan^2α)tan2α=2tanα/(1-tan^2α) 1、不等式的定义 在客观世界中,量与量之间的不等关系是普遍存在的,我们用数学符号、、连接两个数或代数式以表示它们之间的不等关系,含有这些不等号的式子,叫做不等式。 2、比较两个实数的大小 两个实数的大小是用实数的运算性质来定义的,有a-baa-b=0a-ba0,则有a/baa/b=1a/ba 3、不等式的性质 (1)对称性:ab (2)传递性:ab,ba (3)可加性:aa+cb+c,ab,ca+c (4)可乘性:ab,cacb0,c0bd; (5)可乘方:a0bn(nN,n (6)可开方:a0 (nN,n2)。 注意: 一个技巧 作差法变形的技巧:作差法中变形是关键,常进行因式分解或配方。 一种方法 待定系数法:求代数式的范围时,先用已知的代数式表示目标式,再利用多项式相等的法则求出参数,最后利用不等式的性质求出目标式的范围。 函数的值域取决于定义域和对应法则,不论采用何种方法求函数值域都应先考虑其定义域,求函数值域常用方法如下: (1)直接法:亦称观察法,对于结构较为简单的函数,可由函数的解析式应用不等式的性质,直接观察得出函数的值域。 (2)换元法:运用代数式或三角换元将所给的复杂函数转化成另一种简单函数再求值域,若函数解析式中含有根式,当根式里一次式时用代数换元,当根式里是二次式时,用三角换元。 (3)反函数法:利用函数f(x)与其反函数f-1(x)的定义域和值域间的关系,通过求反函数的定义域而得到原函数的值域,形如(a≠0)的函数值域可采用此法求得。 (4)配方法:对于二次函数或二次函数有关的函数的值域问题可考虑用配方法。 (5)不等式法求值域:利用基本不等式a+b≥[a,b∈(0,+∞)]可以求某些函数的值域,不过应注意条件“一正二定三相等”有时需用到平方等技巧。 (6)判别式法:把y=f(x)变形为关于x的一元二次方程,利用“△≥0”求值域。其题型特征是解析式中含有根式或分式。 (7)利用函数的单调性求值域:当能确定函数在其定义域上(或某个定义域的子集上)的单调性,可采用单调性法求出函数的值域。 (8)数形结合法求函数的值域:利用函数所表示的几何意义,借助于几何方法或图象,求出函数的值域,即以数形结合求函数的值域。 ⑴集合与简易逻辑:集合的概念与运算、简易逻辑、充要条件 ⑵函数:映射与函数、函数解析式与定义域、值域与最值、反函数、三大性质、函数图象、指数与指数函数、对数与对数函数、函数的应用 ⑶数列:数列的有关概念、等差数列、等比数列、数列求和、数列的应用 ⑷三角函数:有关概念、同角关系与诱导公式、和、差、倍、半公式、求值、化简、证明、三角函数的图象与性质、三角函数的应用 ⑸平面向量:有关概念与初等运算、坐标运算、数量积及其应用 ⑹不等式:概念与性质、均值不等式、不等式的证明、不等式的解法、绝对值不等式、不等式的应用 幂函数 定义 形如y=x^a(a为常数)的函数,即以底数为自变量幂为因变量,指数为常量的函数称为幂函数。 定义域和值域 当a为不同的数值时,幂函数的定义域的不同情况如下: 如果a为任意实数,则函数的定义域为大于0的所有实数;如果a为负数,则x肯定不能为0,不过这时函数的定义域还必须根[据q的奇偶性来确定,即如果同时q为偶数,则x不能小于0,这时函数的定义域为大于0的所有实数;如果同时q为奇数,则函数的定义域为不等于0的所有实数。当x为不同的数值时,幂函数的值域的不同情况如下:在x大于0时,函数的值域总是大于0的实数。在x小于0时,则只有同时q为奇数,函数的值域为非零的实数。而只有a为正数,0才进入函数的值域 性质 对于a的取值为非零有理数,有必要分成几种情况来讨论各自的特性: 首先我们知道如果a=p/q,q和p都是整数,则x^(p/q)=q次根号(x的p次方),如果q是奇数,函数的定义域是R,如果q是偶数,函数的定义域是[0,+∞)。当指数n是负整数时,设a=-k,则x=1/(x^k),显然x≠0,函数的定义域是(-∞,0)∪(0,+∞).因此可以看到x所受到的限制来源于两点,一是有可能作为分母而不能是0,一是有可能在偶数次的根号下而不能为负数,那么我们就可以知道: 排除了为0与负数两种可能,即对于x>0,则a可以是任意实数; 排除了为0这种可能,即对于x 排除了为负数这种可能,即对于x为大于且等于0的所有实数,a就不能是负数。 1.多面体的结构特征 (1)棱柱有两个面相互平行,其余各面都是平行四边形,每相邻两个四边形的公共边平行。 正棱柱:侧棱垂直于底面的棱柱叫做直棱柱,底面是正多边形的直棱柱叫做正棱柱。反之,正棱柱的底面是正多边形,侧棱垂直于底面,侧面是矩形。 (2)棱锥的底面是任意多边形,侧面是有一个公共顶点的三角形。 正棱锥:底面是正多边形,顶点在底面的射影是底面正多边形的中心的棱锥叫做正棱锥。特别地,各棱均相等的正三棱锥叫正四面体。反过来,正棱锥的底面是正多边形,且顶点在底面的射影是底面正多边形的中心。 (3)棱台可由平行于底面的平面截棱锥得到,其上下底面是相似多边形。 2.旋转体的结构特征 (1)圆柱可以由矩形绕一边所在直线旋转一周得到。 (2)圆锥可以由直角三角形绕一条直角边所在直线旋转一周得到。 (3)圆台可以由直角梯形绕直角腰所在直线旋转一周或等腰梯形绕上下底面中心所在直线旋转半周得到,也可由平行于底面的平面截圆锥得到。 (4)球可以由半圆面绕直径旋转一周或圆面绕直径旋转半周得到。 3.空间几何体的三视图 空间几何体的三视图是用平行投影得到,这种投影下,与投影面平行的平面图形留下的影子,与平面图形的形状和大小是全等和相等的,三视图包括正视图、侧视图、俯视图。 三视图的长度特征:“长对正,宽相等,高平齐”,即正视图和侧视图一样高,正视图和俯视图一样长,侧视图和俯视图一样宽。若相邻两物体的表面相交,表面的交线是它们的分界线,在三视图中,要注意实、虚线的画法。 4.空间几何体的直观图 空间几何体的直观图常用斜二测画法来画,基本步骤是: (1)画几何体的底面 在已知图形中取互相垂直的x轴、y轴,两轴相交于点O,画直观图时,把它们画成对应的x′轴、y′轴,两轴相交于点O′,且使∠x′O′y′=45°或135°,已知图形中平行于x轴、y轴的线段,在直观图中平行于x′轴、y′轴。已知图形中平行于x轴的线段,在直观图中长度不变,平行于y轴的线段,长度变为原来的一半。 (2)画几何体的高 在已知图形中过O点作z轴垂直于xOy平面,在直观图中对应的z′轴,也垂直于x′O′y′平面,已知图形中平行于z轴的线段,在直观图中仍平行于z′轴且长度不变。 求函数的解析式一般有四种情况 (1)根据某实际问题需建立一种函数关系时,必须引入合适的变量,根据数学的有关知识寻求函数的解析式。 (2)有时题设给出函数特征,求函数的解析式,可采用待定系数法。比如函数是一次函数,可设f(x)=ax+b(a≠0),其中a,b为待定系数,根据题设条件,列出方程组,求出a,b即可。 (3)若题设给出复合函数f[g(x)]的表达式时,可用换元法求函数f(x)的表达式,这时必须求出g(x)的值域,这相当于求函数的定义域。 (4)若已知f(x)满足某个等式,这个等式除f(x)是未知量外,还出现其他未知量(如f(-x),等),必须根据已知等式,再构造其他等式组成方程组,利用解方程组法求出f(x)的表达式。 你也可以在好范文网搜索更多本站小编为你整理的其他高一年级必修五数学知识点(通用多篇)范文。 【导语】高一新生要根据自己的条件,以及高中阶段学科知识交叉多、综合性强,以及考查的知识和思维触点广的特点,找寻一套行之有效的学习方法。今天©无忧考网为各位同学整理了《高一年级数学幂函数知识点》,希望对您的学习有所帮助! 高一年级数学幂函数知识点(一) 1.高中数学函数函数的概念:设A、B是非空的数集,如果按照某个确定的对应关系f,使对于函数A中的任意一个数x,在函数B中都有确定的数f(x)和它对应,那么就称f:A→B为从函数A到函数B的一个函数.记作:y=f(x),x∈A.其中,x叫做自变量,x的取值范围A叫做函数的定义域;与x的值相对应的y值叫做函数值,函数值的函数{f(x)|x∈A}叫做函数的值域. 注意: 函数定义域:能使函数式有意义的实数x的函数称为函数的定义域。 求函数的定义域时列不等式组的主要依据是: (1)分式的分母不等于零; (2)偶次方根的被开方数不小于零; (3)对数式的真数必须大于零; (4)指数、对数式的底必须大于零且不等于1. (5)如果函数是由一些基本函数通过四则运算结合而成的.那么,它的定义域是使各部分都有意义的x的值组成的函数. (6)指数为零底不可以等于零, (7)实际问题中的函数的定义域还要保证实际问题有意义. 相同函数的判断方法:①表达式相同(与表示自变量和函数值的字母无关);②定义域一致(两点必须同时具备) 2.高中数学函数值域:先考虑其定义域 (1)观察法 (2)配方法 (3)代换法 3.函数图象知识归纳 (1)定义:在平面直角坐标系中,以函数y=f(x),(x∈A)中的x为横坐标,函数值y为纵坐标的点P(x,y)的函数C,叫做函数y=f(x),(x∈A)的图象.C上每一点的坐标(x,y)均满足函数关系y=f(x),反过来,以满足y=f(x)的每一组有序实数对x、y为坐标的点(x,y),均在C上. (2)画法 A、描点法: B、图象变换法 常用变换方法有三种 (1)平移变换 (2)伸缩变换 (3)对称变换 4.高中数学函数区间的概念 (1)函数区间的分类:开区间、闭区间、半开半闭区间 (2)无穷区间 5.映射 一般地,设A、B是两个非空的函数,如果按某一个确定的对应法则f,使对于函数A中的任意一个元素x,在函数B中都有确定的元素y与之对应,那么就称对应f:AB为从函数A到函数B的一个映射。记作“f(对应关系):A(原象)B(象)” 对于映射f:A→B来说,则应满足: (1)函数A中的每一个元素,在函数B中都有象,并且象是的; (2)函数A中不同的元素,在函数B中对应的象可以是同一个; (3)不要求函数B中的每一个元素在函数A中都有原象。 6.高中数学函数之分段函数 (1)在定义域的不同部分上有不同的解析表达式的函数。 (2)各部分的自变量的取值情况. (3)分段函数的定义域是各段定义域的交集,值域是各段值域的并集. 补充:复合函数 如果y=f(u)(u∈M),u=g(x)(x∈A),则y=f[g(x)]=F(x)(x∈A)称为f、g的复合函数。 高一年级数学幂函数知识点(二) 幂函数定义: 形如y=x^a(a为常数)的函数,即以底数为自变量幂为因变量,指数为常量的函数称为幂函数。 定义域和值域: 当a为不同的数值时,幂函数的定义域的不同情况如下:如果a为任意实数,则函数的定义域为大于0的所有实数;如果a为负数,则x肯定不能为0,不过这时函数的定义域还必须根[据q的奇偶性来确定,即如果同时q为偶数,则x不能小于0,这时函数的定义域为大于0的所有实数;如果同时q为奇数,则函数的定义域为不等于0的所有实数。当x为不同的数值时,幂函数的值域的不同情况如下:在x大于0时,函数的值域总是大于0的实数。在x小于0时,则只有同时q为奇数,函数的值域为非零的实数。而只有a为正数,0才进入函数的值域 幂函数性质: 对于a的取值为非零有理数,有必要分成几种情况来讨论各自的特性: 首先我们知道如果a=p/q,q和p都是整数,则x^(p/q)=q次根号(x的p次方),如果q是奇数,函数的定义域是R,如果q是偶数,函数的定义域是[0,+∞)。当指数n是负整数时,设a=-k,则x=1/(x^k),显然x≠0,函数的定义域是(-∞,0)∪(0,+∞).因此可以看到x所受到的限制来源于两点,一是有可能作为分母而不能是0,一是有可能在偶数次的根号下而不能为负数,那么我们就可以知道: 排除了为0与负数两种可能,即对于x>0,则a可以是任意实数; 排除了为0这种可能,即对于x 排除了为负数这种可能,即对于x为大于且等于0的所有实数,a就不能是负数。 总结起来,就可以得到当a为不同的数值时,幂函数的定义域的不同情况如下: 如果a为任意实数,则函数的定义域为大于0的所有实数; 如果a为负数,则x肯定不能为0,不过这时函数的定义域还必须根据q的奇偶性来确定,即如果同时q为偶数,则x不能小于0,这时函数的定义域为大于0的所有实数;如果同时q为奇数,则函数的定义域为不等于0的所有实数。 在x大于0时,函数的值域总是大于0的实数。 在x小于0时,则只有同时q为奇数,函数的值域为非零的实数。 而只有a为正数,0才进入函数的值域。 由于x大于0是对a的任意取值都有意义的,因此下面给出幂函数在第一象限的各自情况. 可以看到: (1)所有的图形都通过(1,1)这点。 (2)当a大于0时,幂函数为单调递增的,而a小于0时,幂函数为单调递减函数。 (3)当a大于1时,幂函数图形下凹;当a小于1大于0时,幂函数图形上凸。 (4)当a小于0时,a越小,图形倾斜程度越大。 (5)a大于0,函数过(0,0);a小于0,函数不过(0,0)点。 (6)显然幂函数无界。高一年级必修五数学知识点(通用多篇)范文的介绍就聊到这里吧,感谢你花时间阅读本站内容,更多关于高一年级必修五数学知识点(通用多篇)范文、高一年级必修五数学知识点(通用多篇)范文的信息别忘了在本站进行查找喔。
未经允许不得转载! 作者:谁是谁的谁,转载或复制请以超链接形式并注明出处。
原文地址:http://www.9qk.net/post/2765.html发布于:2025-11-21




